Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This work introduces TopoBench, an open-source library designed to standardize benchmarking and accelerate research in topological deep learning (TDL). TopoBench decomposes TDL into a sequence of independent modules for data generation, loading, transforming and processing, as well as model training, optimization and evaluation. This modular organization provides flexibility for modifications and facilitates the adaptation and optimization of various TDL pipelines. A key feature of TopoBench is its support for transformations and lifting across topological domains. Mapping the topology and features of a graph to higher-order topological domains, such as simplicial and cell complexes, enables richer data representations and more fine-grained analyses. The applicability of TopoBench is demonstrated by benchmarking several TDL architectures across diverse tasks and datasets.more » « lessFree, publicly-accessible full text available March 26, 2026
-
Abstract The estimation of demographic parameters is a key component of evolutionary demography and conservation biology. Capture–mark–recapture methods have served as a fundamental tool for estimating demographic parameters. The accurate estimation of demographic parameters in capture–mark–recapture studies depends on accurate modeling of the observation process. Classic capture–mark–recapture models typically model the observation process as a Bernoulli or categorical trial with detection probability conditional on a marked individual's availability for detection (e.g., alive, or alive and present in a study area). Alternatives to this approach are underused, but may have great utility in capture–recapture studies. In this paper, we explore a simple concept:in the same way that counts contain more information about abundance than simple detection/non‐detection data, the number of encounters of individuals during observation occasions contains more information about the observation process than detection/non‐detection data for individuals during the same occasion. Rather than using Bernoulli or categorical distributions to estimate detection probability, we demonstrate the application of zero‐inflated Poisson and gamma‐Poisson distributions. The use of count distributions allows for inference on availability for encounter, as well as a wide variety of parameterizations for heterogeneity in the observation process. We demonstrate that this approach can accurately recover demographic and observation parameters in the presence of individual heterogeneity in detection probability and discuss some potential future extensions of this method.more » « less
An official website of the United States government

Full Text Available